top of page

Publications on Artificial Metalloenzymes

23. Reactivity Tuning of Metal‐Free Artificial Photoenzymes through Binding Site Specific Bioconjugation

Thomas Kuckhoff, Richard C. Brewster, Calum T. J. Ferguson*, Amanda G. Jarvis*

Eur. J. Org. Chem. 2023, 26, e202201412.

22. Protein–Substrate Supramolecular Interactions for the Shape‐Selective Hydroformylation of Long‐Chain α‐Olefins

P. J. Deuss, A. G. Jarvis

Supramolecular Catalysis: New Directions and Developments, 2022, p. 547-560.

21. Macrocylases as synthetic tools for ligand synthesis: enzymatic synthesis of cyclic peptides containing metal-binding amino acids.

R. C. Brewster, I. Colmernero, C. E. Soden, A. G. Jarvis*

Royal Society, Open Sci. 2021, 8, 211098. (part of a special issue: Catalysis for a sustainable future).


20. News and Views: Striking gold with chimeric proteins

A. G. Jarvis,

Nat. Catal. 2021, 4, 639-640.

19. Engineering Thermostability in Artificial Metalloenzymes to Increase Catalytic Activity

M. V. Doble, L. Obrecht, H-J. Joosten, M. Lee, H. J. Rozeboom, E. Branigan, J. H. Naismith, D. B. Janssen, A. G. Jarvis*, P. C. J. Kamer

ACS Catal. 2021, 11, 3620.

18. Palladium in biological media: Can the synthetic chemist's most versatile transition metal become a powerful biological tool?

R. C. Brewster, E. Klemencic, A. G. Jarvis

J. Inorg. Biochem. 2021, 251, 111317

17. Designer metalloenzymes for synthetic biology: Enzyme hybrids for catalysis

A. G. Jarvis

Curr. Opin. Chem. Biol. 202058, 63.

16. Catalysis and biophysical investigation of rhodium hydroformylase

H. T. Imam, A. G. Jarvis*, I. Baig, C. C. R. Allen, A. C. Marr*, P. C. J. Kamer*

Catal. Sci. Technol. 20199, 6428-6437.


15. Artificial Metalloenzymes as Catalysts for Oxidative Lignin Degradation

M. V. Doble, A. G. Jarvis*, A. C. C. Ward, J. D. Colburn, J. P. Goetz, M. Buehl, P. C. J. Kamer

ACS Sustainable Chem. Eng. 2018, 6, 15100.

14. Chapter 10: Hybrid Catalysts for other C-C and C-X bond formation reactions.

P. J. Deuss, M. V. Doble, A. G. Jarvis, and P. C. J. Kamer

Artificial metalloenzymes and metalloDNAzymes in catalysis. From design to application. Wiley, 2018.

13. Enzyme activity by design: an artificial rhodium hydroformylase for linear aldehydes

A. G. Jarvis*, L. Obrecht, P. J. Deuss, W. Laan, E. K. Gibson, P. P. Wells, and P. C. J. Kamer*

Angew. Chem., Int. Ed. 2017, 56, 13596-13600. VIP paper

12. Outperforming Nature’s Catalysts: Designing Metalloenzymes for Chemical Synthesis

C. Fehl, A. G. Jarvis, M. Espling, B. Davis and P. C. J. Kamer

Modern Development in Catalysis, 2017, 89-122. World Scientific

11. Catalyst design in oxidation chemistry; from KMnO­4 to artificial metalloenzymes

M. V. Doble, A. C. C. Ward, P. J. Deuss, A. G. Jarvis*, and P. C. J. Kamer

Bioorganic and Medicinal Chemistry, 2014, 22, 5657-5677.


Publications on C-H amination and nitrene methodology

10. The Multiple Facets of Iodine(III) Compounds in an unprecedented catalytic auto-amination for chiral amine synthesis

J. Buendia, G. Grelier, B. Darses, A. G. Jarvis, and P. Dauban

Angew. Chem., Int. Ed. 2016, 55, 7530-7533.

9. Chapter 7.19: Addition Reactions with Formation of Carbon-Nitrogen Bonds

P. Dauban, B. Darses and A. Jarvis

Comprehensive Organic Synthesis II, 2014, 7, 538-604. Elseiver.

8. Asymmetric synthesis of amines through rhodium-catalyzed C-H amination with  sulfonimidoylnitrenes

B. Darses, A. G. Jarvis, A.-K. Mafroud, G. Estenne-Bouhtou, G. Dargazanli, and P. Dauban

Synthesis; Practical Procedures Paper, 2013, 45, 2079-2087.

7. Chiral wide-bite-angle diphosphine ligands: synthesis, coordination chemistry, and application in Pd-catalysed allylic alkylation

C. F. Czauderna, A. G. Jarvis, F. J. L. Heutz, D. B. Cordes, A. M. Z. Slawin, J. I. van der Vlugt, and P. C. J. Kamer Organometallics, 2015, 34, 1608-1615.

6. Horner-Wadsworth-Emmons (HWE) reactions in THF: effect of hydroperoxide species

A. G. Jarvis, E. R. Wells, and I. J. S. Fairlamb

SynLett, 2013, 24, 1493-1496

5. A remarkable cis- and trans-spanning dibenzylidene acetone diphosphine chelating ligand (dbaphos)

A. G. Jarvis, P. E. Sehnal, S. E Bajwa, A. C. Whitwood, X. Zhang, M. S. Cheung, Z. Lin and I. J. S. Fairlamb

Chem. Eur. J. 2013, 19, 6034-6043

4. Photochemical-mediated solid-state [2+2]-cycloaddition reactions of an unsymmetrical dibenzylidene acetone (monothiophos-dba)

A. G. Jarvis, H. A. Sparkes, S. E. Tallentire, L. E. Hatcher, M. R. Warren, P. R. Raithby, D. R. Allan, A. C. Whitwood, M. C. R. Cockett, S. B. Duckett, J. L. Clarke and I. J. S. Fairlamb

CrystEngComm, 2012, 14, 5564-5571

3. Cu(I) complexes containing a multidentate and conformationally flexible dibenzylidene acetone ligand (dbathiophos): application in catalytic alkene cyclopropanation

A. G. Jarvis, A. C. Whitwood and I. J. S. Fairlamb

Dalton Trans. 2011, 40, 3695-3702

2. The influence of alkenes as π-acidic ligands in Pd-catalysed cross-couplings (Invited contribution for Special issue New Trends in Palladium Chemistry: Synthesis, Structure, Reactivity and Applications)

A. G. Jarvis and I. J. S. Fairlamb

Topics Curr. Org. Chem. 2011, 15, 3175-3196.

1. Ion-tagged π-acidic alkene ligands promote Pd-catalysed allyl-aryl couplings in an ionic liquid

P. S. Bäuerlein, I. J. S. Fairlamb, A. G. Jarvis, A. F. Lee, C. Müller, J. M. Slattery, R. Thatcher, D. Vogt and A. Whitwood

Chem. Commun. 2009, 5734-5736.

Other publications (PhD, Postdoc etc)

bottom of page